
Introduction to Adobe Flex

Alin-Cristian JOIŢA

Faculty of Computer Science for Business Management,

 Romanian – American University, Bucharest, Romania

ABSTRACT

Rich Internet applications (RIA) are

web applications that have the features and

functionality of traditional desktop

applications. RIAs typically transfer the

processing necessary for the user interface to

the web client but keep the bulk of the data

(i.e. maintaining the state of the program, the

data etc) back on the application server.

Adobe Flex is an umbrella term for a

group of technologies initially released in

March of 2004 by Macromedia to support the

development and deployment of rich Internet

applications based on their proprietary

Macromedia Flash platform.

1. INTRODUCTION

The Adobe Flex product line is the most

comprehensive solution for delivering RIAs

across the enterprise and over the web.

Designed to help developers and development

organizations meet the challenges presented

by RIAs, Flex is already being used by

hundreds of organizations to deliver

interactive data dashboards, customer and

employee self-service applications, online

product selectors and configurators, and

business-to-business applications.

The Flex product line provides a highly

productive programming model (Flex

framework), integrated Eclipse-based

development tools (Flex Builder), and robust

data integration services (Flex Data Services)

that enable organizations to rapidly deliver

solutions that dramatically improve user

productivity and increase online revenues,

while integrating with existing applications

and websites.

Applications delivered with Flex offer a

better experience because they take advantage

of the browser and Flash Player runtime.

Installed on over 97% of Internet-connected

PCs, Flash Player provides a consistent, cross-

platform runtime that combines a high-

performance virtual machine with integrated

support for multilingual text display, printing,

data manipulation, motion, and multimedia.

On top of these capabilities, the Flex

framework layers a rich set of user interface

components and design principles that

encapsulate best practices in interaction design

and usability.

Flex provides client-side service

components that enable applications to interact

with any remote server via SOAP web

services, REST services, or raw HTTP or

custom socket-based protocols. For more

sophisticated integration needs, Flex Data

Services provides additional support for

publish/subscribe messaging, real-time

streaming data, and direct integration with

existing server-side Java objects as well as

other enterprise back-end applications

including messaging, security, and transaction

management.

Finally, Flex provides a highly productive

development model that easily integrates with

existing processes and is based on standards

and best practices that have emerged over the

last ten years of Internet development. The

Flex development model uses XML for user

interface design and layout and an

implementation of ECMAScript (that is,

JavaScript) for client logic. The Flex Builder

integrated development environment (IDE)

provides a robust set of coding, debugging,

and visual user interface layout tools that

shorten the learning curve for new developers

and easily integrate with existing source code

management systems. In addition, Flex

provides integrated support for unit testing and

automated functional testing tools.

2. FLEX RUNTIME ARHITECTURE

The Flex runtime architecture is closely

aligned with the just-in-time deployment

model of web applications. The client portion

of a Flex application is deployed as a binary

file that contains the compiled bytecode for

the application. Users then deploy this file to a

web server just as they would an HTML file or

an image. When the file is requested by a

browser, it is downloaded and the bytecode is

executed by the Flash Player runtime.

As illustrated in Figure 1, once started, the

application can request additional data or

content over the network via standard HTTP

calls (sometimes referred to as REST services)

or through web services (SOAP). Flex clients

are server agnostic and can be used in

conjunction with any server environment,

including standard web servers and common

server scripting environments such as

JavaServer Pages (JSP), Active Server Pages

(ASP), ASP.NET, PHP, and ColdFusion.

Figure 1

If the Flex client application is used in

conjunction with Flex Data Services, the

application has access to additional services.

Flex clients can make direct calls to Java

objects as well as subscribe to real-time data

feeds, send messages to other clients, and

integrate with existing Java Message Service

(JMS) messaging systems. The Flex Data

Services application runs on the server within

the Java web container.

3. FLEX DEVELOPMENT MODEL AND

APPLICATION FRAMEWORK

The development process for Flex

applications mirrors the process for Java, C#,

C++, or other traditional client development

languages. Developers write MXML and

ActionScript source code using the Flex

Builder IDE or a standard text editor. As

shown in Figure 2, the source code is then

compiled into bytecode by the Flex compiler,

resulting in a binary file with the *.swf

extension.

Figure 2

 As shown in Figure 2, the Flex application

framework consists of MXML, ActionScript

3.0, and the Flex class library. Developers use

MXML to declaratively define the application

user interface elements and use ActionScript

for client logic and procedural control. The

Flex class library contains Flex components,

layout managers, behaviors, and service

components.

 With the Flex component-based

development model, developers can create

applications using prebuilt components,

combine prebuilt components into composite

components, or create new components by

extending the prebuilt components or their

base classes. The ability to create custom

components is one of the most powerful

aspects of Flex development.

Like other enterprise runtime

environments, Flash Player provides a rich set

of services that developers can use to construct

components. These include display APIs for

drawing to the screen, manipulating graphics,

and controlling audio or video as well as APIs

for accessing network resources, parsing data,

and performing calculations. Combined with

the built-in layout, data binding, and effects

classes in the Flex component API, these

provide a complete environment for delivering

a wide variety of custom applications.

4. MXML: THE FLEX MARKUP

LANGUAGE

Like HTML, MXML is a markup language

that describes user interfaces that expose

content and functionality. Unlike HTML,

MXML provides declarative abstractions for

client-tier logic and bindings between the user

interface and application data. MXML helps

maximize developer productivity and

application reusability by cleanly separating

presentation and business logic.

The following example produces the

output shown in Figure 3:

<?xml version="1.0" encoding="utf-8"?>

<mx:Application

xmlns:mx="http://www.adobe.com/2006/mxml

" layout="absolute">

 <mx:Form x="397" y="298">

 <mx:FormHeading

label="Form Heading"/>

 <mx:FormItem

label="RadioButton Control">

 <mx:RadioButton

x="409" y="477" label="Radio"/>

 </mx:FormItem>

 <mx:FormItem

label="CheckBox">

 <mx:CheckBox

x="409" y="451" label="Checkbox"/>

 </mx:FormItem>

 <mx:FormItem

label="ComboBox">

 <mx:ComboBox

x="409" y="339"></mx:ComboBox>

 </mx:FormItem>

 <mx:FormItem

label="TextField">

 <mx:TextInput x="409"

y="421"/>

 </mx:FormItem>

 <mx:FormItem

label="Button">

 <mx:Button x="409"

y="309" label="Button"/>

 </mx:FormItem>

 </mx:Form>

</mx:Application>

Figure 3

5. ACTIONSCRIPT 3.0

ActionScript is the object-oriented

programming language used for Flex

development. Like JavaScript, ActionScript

3.0 is an implementation of ECMAScript, the

international standardized programming

language for scripting. However, because it is

an implementation of the latest ECMAScript

proposal, ActionScript provides many

capabilities not common in the versions of

JavaScript supported by most browsers. At

development time, ActionScript 3.0 adds

support for strong typing, interfaces,

delegation, namespaces, error handling, and

ECMAScript for XML (E4X).

At runtime, the most significant difference

between JavaScript and ActionScript is that

ActionScript is just-in-time compiled to native

machine code by Flash Player. As a result, it

can provide much higher performance and

more efficient memory management than

interpreted JavaScript.

Flex developers use ActionScript to write

client-side logic, such as event listeners and

call-back functions, or to define custom

components.

ActionScript 3.0 is up to 10 times faster

than it’s predecessor ActionScript 2.0.

MXML gets translated into ActionScript

3.0 code at compile time. The following would

be the AS equivalent of the previous MXML

example:

<?xml version="1.0" encoding="utf-8"?>

<mx:Application

xmlns:mx="http://www.adobe.com/2006/mxml

" layout="vertical" initialize="start()">

 <mx:Script>

 <![CDATA[

import mx.controls.TextInput; import

mx.core.UIComponent; import

mx.controls.Button;

import mx.controls.ComboBox; import

mx.controls.CheckBox; import

mx.containers.FormHeading;

 import mx.controls.RadioButton;

import mx.containers.FormItem; import

mx.containers.Form;

 private function start():void {

 var form:Form = new Form();

 var fh:FormHeading = new

FormHeading(); fh.label = "Form Heading";

form.addChild(fh);

 var firb:FormItem = new

FormItem(); firb.label = "RadioButton

Control";

 var rb:RadioButton = new

RadioButton();

 rb.x = 409; rb.y = 451;

rb.label = "radio"; firb.addChild(rb);

form.addChild(firb);

 var ficb:FormItem = new

FormItem(); ficb.label = "CheckBox";

 var cb:CheckBox = new

CheckBox();

 cb.x = 409; cb.y = 451;

ficb.addChild(cb); form.addChild(ficb);

 var ficmb:FormItem = new

FormItem(); ficmb.label = "ComboBox"

 var cmb:ComboBox = new

ComboBox();

 cmb.x = 409; cmb.y = 339;

ficmb.addChild(cmb); form.addChild(ficmb);

 var fiti:FormItem = new

FormItem(); fiti.label = "TextField";

 var ti:TextInput = new

TextInput() ti.x = 409; ti.y = 421;

fiti.addChild(ti); form.addChild(fiti);

 var fib:FormItem = new

FormItem(); fib.label = "Button";

 var btn:Button = new Button();

 btn.x = 409; btn.y = 309;

btn.label = "Button"; fib.addChild(btn);

form.addChild(fib);

 this.addChild(form);

 }

]]>

 </mx:Script>

</mx:Application>

6. FLEX CLASS LIBRARY

Flex includes a rich class library that

contains Flex components (containers and

controls), data binding, behaviors, and other

features.

Beyond providing a set of built-in

capabilities (described in the following

subsections), Flex components follow a

consistent cross-platform experience model

based on user interface design best practices.

As a result, developers can deliver

professional-looking applications that delight

users without the active involvement of a

graphic designer.

Where a custom look and feel is desired,

designers can easily customize components

through an extensive set of CSS-based styles.

In addition, users can create custom skins

using industry-standard tools such as

Photoshop, Illustrator, and Flash Professional.

As with built-in styles, custom skin properties

are set using CSS properties.

6.1. VISUAL COMPONENTS

 The component-based model eases the

creation of Flex applications. Developers can

use the prebuilt components included with

Flex, extend components to add new

properties and methods, and create new

components.

 The Flex class library supplies two types of

visual components: containers and controls.

When developers build an application using

Flex, they describe its user interface with

controls and containers. Controls are user

interface components that handle user

interactions and display data that users can

manipulate directly through that control.

Examples of controls are the DataGrid and the

TreeControl. A container defines a region of

the Flash Player drawing surface and controls

the layout for everything in the container,

including other containers and controls.

Examples of containers are a data entry Form

container, a Box, and a Grid.

 Flex components are extremely flexible

and provide developers with a great deal of

control over the component’s appearance, how

the component reacts to user interactions, the

font and font size of any text included in the

component, the size of the component in the

application, and more. Flex components

support the following characteristics:

• Events—Application or user actions

that require a component response

• Behaviors—Visible or audible

changes to the component triggered by

an application or user action.

• Skins—Symbols that control a

component’s appearance

• Styles—Set of characteristics, such

as font, font size, and text alignment

• Size—Height and width of a

component (all components have a

default size)

 Developers can control these characteristics

at development time through MXML or CSS,

or at runtime through the component’s

ActionScript API, including creating or

destroying instances of a component based on

application data or user interaction.

6.2. SERVICE COMPONENTS

 The Flex service components and

underlying Flash Player enable applications to

access data from a wide variety of resources.

The Flex class library includes built-in classes

for calling SOAP-based web services and for

loading XML or other data via HTTP.

Developers can also take advantage of custom

protocols by leveraging support for binary

sockets in Flash Player or by loading data

from the host browser. Using Flex Data

Services, developers can also make remote

API calls to Java objects or subscribe to real-

time message queues and data services.

 Once retrieved, data in a Flex application

can be managed as a typed variable, an array

of objects, as native XML (using E4X), or as

an instance of the Collection class. The

Collection class simplifies development of

data-driven applications by automatically

keeping track of changes to the data so that

they can be sent to the remote server when the

application is ready to synchronize.

 Flex also provides a mechanism for binding

data objects to visual controls so that the user

interface is automatically updated when the

underlying data is changed, either as a result

of logic running on the client or of changes

sent from a remote server. Data binding can be

set up declaratively in MXML or

programmatically in ActionScript.

6.3. FLEX BEHAVIORS

 The Flex class library also provides

prebuilt behaviors that enable developers to

easily add motion and sound to their

application to give users context for their

actions. For example, a developer can use

behaviors to cause a dialog box to bounce

slightly when it receives focus or animate a

user selected item to illustrate the transition

from a master view to a detail view.

 A behavior is a combination of a trigger

paired with an effect. A trigger is an action,

such as a mouse click on a component, or a

component becoming visible. These are

typically exposed as events.

 An effect is a visible change to the

component occurring over a period of time,

measured in milliseconds. Examples of built-

in Flex effects are fade, move, resize, or

pause. Developers can define their own effects

using ActionScript or composite multiple

built-in effects together to meet their

application needs. Effects can be applied to

individual components or containers.

7. FLEX BUILDER

Flex Builder is the Adobe IDE for Flex

development. It is built on the open source

Eclipse tools platform and can be used either

as a standalone product or as a set of plug-ins

within an existing Eclipse installation.

Flex development can be done with any

text editor, but Flex Builder enables

developers to learn Flex quickly and continue

working productively by providing a rich set

of code editors, a drag-and-drop user interface

assembly, and a powerful interactive

debugger.

Figure 4

 Flex Builder provides built-in code editors

for MXML, ActionScript, and CSS. In

addition to code hinting for built-in Flex tags

and classes, Flex Builder provides statement

completion and type checking for custom

classes and libraries. The built-in incremental

compiler also flags syntax errors and type

mismatches as developers work, enabling

them to quickly fix mistakes and move on,

rather than spending valuable time trying to

hunt down problems after the fact.
 The Flex Builder design view enables

developers to quickly assemble and preview

Flex application interfaces. Developers can

add custom or built-in components by

dragging them from the component view and

then take advantage of snapping and

alignment tools to arrange them in the user

interface. They can also make changes directly

in the code and quickly switch to design view

for a high-fidelity preview of the compiled

application. Flex Builder supports all of the

layout models available in MXML, including

the box model, absolute positioning, and

constraint-based layout.

 Flex Builder also makes it easier to

customize the appearance of an application.

Property editors enable developers to quickly

set the most commonly used properties and

preview the results in design view. In addition,

users can easily import graphical assets

created in professional design tools such as

Flash or Photoshop for use as icons or skins in

Flex applications.

Figure 5

8. INTERACTIVE DEBUGGING

The Flex Builder integrated debugger

enables developers to quickly track down and

resolve problems in their applications. The

debugging perspective allows them to set

breakpoints, inspect variables and expressions,

change values, and monitor trace messages.

Applications can be debugged in standalone

Flash Player or in any browser that has Debug

Flash Player installed, including remote

machines running a different operating

system.

9. CONCLUSION

Flex is a very powerful tool for developing

RIAs. Its rich library is full of specialized

components that speed up the process of RIA

building. It is also very flexible. Developers

can take full advantage of the powerful

ActionScript 3.0 language to build custom

components from scratch, extend existing

components or just modify them to suit their

needs.

Flex applications run smooth on user

machines because of the optimized Flash

Player 9 environment which uses a ―garbage

collector‖ to free up system resources as they

are no longer needed.

Flex offers endless possibilities for

building fast and complex Rich Internet

Applications.

REFERENCES

[1] Adobe Products Overview http://www.

adobe.com/products/flex/

[2] FLEX, http://www.flex.org/

[3] Wikipedia http://en.wikipedia.org/wiki/

Adobe_Flex/

http://www.flex.org/
http://en.wikipedia.org/wiki/%20Adobe_Flex/
http://en.wikipedia.org/wiki/%20Adobe_Flex/

